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emerging photovoltaics: towards a digital twin



Grand challenges in emerging PV

Voltage losses
• Level matching at interfaces
• QFLS in bulk

Operational stability:
• Re-orientation at interfaces
• De-mixing in bulk
• Photochemistry

emerging-pv.org

OPV

Perovskites62% 

20 % PCE now reached 
by OPV!

See Guan et al., 
https://doi.org/10.1002/adm
a.202400342

Still, large headroom
For improvement

Understanding the essential device physics
• Well established model: compare two samples
• Model search along one dimension: encounter trends
• Model search along several dimensions: use machine 

learning
• Find needle in haystack (quasi-infinite dimensionality): 

towards a digital twin
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Novel ICL for n-i-p Perovskite-Organic Tandem Solar Cells

High fidelity study along the causal chain: two samples are enough for clear cut result
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Causal structure of Material Science

Process conditions Structure Function Target 
property
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Stack Microstructure: SEM Featurization:
Size distribution

Transmission

Electrical performance

Jingjing Tian, Chao Liu, et al., in submission (2024)

Jingjing Tian
+ Chao Liu



How to minimize voltage losses: driving forces and dual EL

Ratio EL from CT and LE controlled by 
driving force

A Classen et al., Nat. En. 2020
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Voltage losses: driving forces and LE lifetime

At low driving force, LE lifetime is crucial!
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Voltage losses follow universal trend
Explained by LE  CT equilibrium

A. Classen et al., Nat. En. 2020
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Voltage losses: the role of interfacial disorder

Different optima for charge generation and recombination

Only 1 D:A pair: WF4:IT-4F bi-layers
16 different process conditions

Charge… …Generation: EQE …Recombination: VOC …Extraction: FF

Annealing temperature
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Excellent 
reproduction of 
exptl. results by 
GPR surrogate 
function

R. Wang et al.,  Adv. En. Mat 2024

Method: transfer printing
• abrupt interface
• Individual morphology control

Rong Wang



CT energies and static interfacial disorder

Surprisingly small variation of EL spectrum
R. Wang et al.,  Adv. En. Mat 2024

Marcus equation:
• Dynamic disorder – el-ph coupling
• Static disorder – interfacial DOS
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Voltage losses: the role of interfacial disorder

Interfacial disorder increases effective degeneracy of CT states

Only 1 D:A pair: WF4:IT-4F bi-layers
16 different process conditions
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Strong effect of process conditions
on driving force within same D:A pair!

High driving force – high LE population!
“Anti-Boltzmann” behavior??

High disorder –
high CT degeneracy
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low CT 
degeneracy

R. Wang et al.,  Adv. En. Mat 2024
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Training optical proxy experiments on the fly

Bulk disorder controls interfacial disorder
UV-Vis is much easier than EL/FTPS/EQE! Proxy experiment!

R. Wang et al.,  Adv. En. Mat 2024
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Towards interfacial disorder management

Target properties controlled by different disorder motifs

R. Wang et al.,  Adv. En. Mat 2024

Method: hierarchical mRMR embedded GPR (C. Liu et al., Adv. Mat 2023)

Result: Knowledge graph of essential predictors for target properties

Stokes shift Nonrad. Rec.



Can OPV be processed in ambient conditions?

Air-light resilience during production allowing upscaling 
without need for vacuum/inert gas

50 D:A pairs
150 devices

30 mins air/room light 
onto active layer before 
electrode deposition
to simulate processing in 
ambient

Xiaoyan Du et al., INFOMAT 
(accepted) 2024

Xiaoyan Du



Stability trends with frontier orbital levels

• Air / light resilience scales with Eg,eff rather than ELUMO,A!

• Points to energy transfer

• Rather than charge transfer
Xiaoyan Du et al., INFOMAT 
(accepted) 2024

Donors:

Air/light resilience after 30 mins

Effective gap LUMO (acceptor)

𝐶𝑇∗ +
3
𝑂2 →

1
𝑂2

𝐴∗ +
3
𝑂2 → 𝐴+ + 𝑂2

−



Stability trends with molecular structure

• Machine-learned predictors for air/light resilience agree with known physics
• For breakthrough innovation, we must go beyond the known.

Xiaoyan Du et al., INFOMAT (accepted) 2024

Gaussian Process Regression (GPR) with embedded mRMR feature selection (C. Liu et al., Adv. Mat 2023)

Target: residual relative Jsc after 30 mins air/light
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Fast parameter inference by multi-evidence fitting

P

Why not rely on blackbox optimization?

Process conditions
Target 
property

C

Chemistry PCE

Quasi-infinite 
dimensionality!

Active learning



Fast parameter inference by multi-evidence fitting

P

VOC

Why not rely on blackbox optimization?

Process conditions

𝑉𝑂𝐶 = 𝐸𝐶𝑆 + 𝑘𝐵 ∙ 𝑇 ∙ 𝑙𝑛
𝑐𝑠𝑡
2

𝑁𝑒𝑓𝑓
2

Target 
property

C

Chemistry
ECS

S

Structure (geometrical, energetic, dynamic)

Stationary carrier 
density under 1 sun

Effective gap

Linking P and C directly to material parameters 
dramatically reduces search space

FF

JSC

PCE

Quasi-infinite 
dimensionality!



A novel implementation of transient pump-probe kinetics

Global fitting yields k1, kr,eff,σ with very little cross-talk
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Intrinsic determination of σ due to square pulses:

• From initial slope

• From stationary value

𝑑𝑐

𝑑𝑡
= 𝐺𝐶𝑆 − 𝑘1 ∙ 𝑐 − 𝑘𝑟,𝑒𝑓𝑓 ∙ 𝑐

2

𝑑𝑐

𝑑𝑡
= 𝐺𝐶𝑆

𝑐𝑠𝑡 = 𝐺𝐶𝑆/𝑘1

Julian Haffner-Schirmer
+ Vincent Le Corre

= photon flux X EQE!



Fitting J-V traces with the same rate equation

𝑑𝑐

𝑑𝑡
= 𝐺𝐶𝑆 − (𝑘1+ 𝑘𝑒𝑥𝑡𝑟) ∙ 𝑐 − 𝑘𝑟,𝑒𝑓𝑓 ∙ 𝑐

2

𝑘𝑒𝑥𝑡𝑟 =
1
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=
2 ∙ 𝜇𝑒𝑥𝑡𝑟∙ 𝑉𝑂𝐶 − 𝑉𝑒𝑥𝑡

𝐿2

simsalabim

Rate equations

Drift-diffusion simulations
Mobility: fitting error

Rate equations OK under 2 conditions:
• FF>80%
• No extraction barriers

Benchmarking against simulated data



Fast parameter extraction by self-learning agents

J. Haffner-Schirmer et al., in submission (2024)

Understanding FF losses in acceptor-rich blends of PM6:BTP-4F-12

Excellent multi-evidence fits

Langevin reduction factor rSL: scaling with energy disorder



OPV beyond 20% PCE: accelerating the next breakthrough

Problem statement:
• Discovery of unseen trends requires big 

data: volume, variety, veracity:
• 1000s of D:A pairs
• Millions of microstructure variations

Impossible for a single lab
Veracity issues

Can’t provide 106 cross-section TEMs
Black box optimization without
using human capacity for abstract 
thinking

Needed:
Probabilistic method to learn (attain predictive power) from 
• incomplete, 
• indirect, 
• uncertain evidence

This is exactly the realm of a digital twin



How does a digital twin achieve acceleration?
Featurization allows redundancy rejection

Process 
conditions Microstructure

S O

Observables
GPR

Morphological
Features:

Domain size

Order

Film thickness

High fidelity 
prediction of VOC

cause cause

UV-Vis spectra: essential microstructure features for correct VOC prediction
Redundancy rejection is not approximation!

X. Du et al., Joule 2020

J-v curves

UV-Vis spectra



Digital twin: redundancy rejection enables inverse design

OP C S

Fast surrogate 

models
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Essential optical features to 
predict target

Essential structural features 
to predict optical features

Essential chemical features 
to predict structural 
features

𝒒𝑪 = 𝒇𝑺
−𝟏 𝒒𝑺 = 𝒇𝑺

−𝟏 𝒇𝒐
−𝟏 𝒒𝒐

Inverse design

L. Lüer et al., Joule 8, 1–17, 2024

Find optimal chemical structure 
given a set of target objectives



Challenges

Current hot topics in data science:

• Uncertainty quantification
• Requires posterior calculation > 

15 parameters

• Cascading surrogates
• From femtoseconds to hours
• From Angstroms to meters

• Mixed integer optimization
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github.com/i-MEET/boar

handles <=10 dimensions
In active development

GPR RF



Conclusions

• Big data approach required to further reduce voltage losses and increase 
operational stability of OPV technology

• A digital twin will allow acceleration of knowledge generation by redundancy 
rejection and fast surrogates allowing inverse design

• A strategy for attaining inverse design capacity is proposed

Goal: from a set of target objectives, identify the optimal molecular structure 
and corresponding process conditions



Thank you for your attention!

Confidential 2022

Device group:
Rong Wang
Andreas Bornschlegl
Zijian Peng
Jingjing Tian
Chaohui Li
Qizhen Song
Julian Haffner-Schirmer
Kaicheng Zhang

Thanks to:
Christoph Brabec
Jens Hauch
Vincent Le Corre
Karen Forberich
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